Two-Stage Hashing for Fast Document Retrieval

Hao Li* Weili Li Heng Ji*
*Computer Science Department, Rensselaer Polytechnic Institute

IBM T.J. Watson Research Center

(lih13, jih)@rpi.edu weiliu@us.ibm.com

Document Retrieval in Big Data

- Traditional IR Methods
 - Memory consuming: represent documents in a vector space
 - Time consuming: cosine similarity calculation
 - Infeasible for large-scale datasets

- Hashing Methods
 - Compact: represent documents as binary codes (e.g., d1 -> “10100100”)
 - Efficient: hamming distance calculation, hash table lookup
 - Scalable to massive datasets

Locality Sensitive Hashing

- Intuition
 - If two data points are close, then after the “projection + binarization” operation they will remain close.

- Advantages:
 - Randomized Hashing: time efficient for search
 - Very high hash table lookup success rate (100% with more than 2 tables)

- Drawback:
 - Inadequate search precision

Two-Stage Hashing Framework

- LSH for neighbor candidate pruning; ITQ for effective re-ranking
- LSH captures term similarity; ITQ captures topic similarity
- Advantages:
 - High hash lookup success rate is attained by the LSH stage
 - High search precision due to the ITQ re-ranking stage
 - Scan only a small portion of an entire dataset
 - Integrate two similarity measures

Iterative Quantization

- Intuition: learn the binary codes achieving the lowest quantization error by seeking a proper rotation of zero centered projected data
- Advantages:
 - Well approximate real-valued data with binary codes
 - High search precision via Hamming distance ranking
- Drawback:
 - Poor hash lookup success rate with longer bits (18.47% with 384 bits)

Experiment Results

- Comparable search accuracy with the traditional IR method
- An order of magnitude speedup in search time (1/30 of traditional IR search time)